Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 8(12): 4907-14, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26593184

RESUMEN

Developments in biochemistry and materials sciences have led to increasing interest in the reactivity of large chemical systems, presenting theoretical and computational challenges that can be addressed with hybrid methods such as ONIOM. Here, we show that the diagonalized ONIOM Hessian can be partitioned/deconstructed into contributions from the individual subcalculations-indicating the curvature of their potential energy surfaces (PESs)-without increasing the computational cost. The resulting pseudofrequencies have particular application in the study of transition structures and higher-order saddle points with ONIOM, where we find that an imaginary frequency may result from combining subcalculations for which the corresponding vibrational frequencies are all real. Two cycloaddition reactions, including functionalization of a 150 atom (5,5) single-walled carbon nanotube, demonstrate how this analysis of pseudofrequencies allows identification of critical points where further exploratory work should be carried out to ensure that the ONIOM PES correctly approximates the target.

2.
J Phys Chem A ; 112(31): 7286-95, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18636693

RESUMEN

We demonstrate that the ONIOM method can be used to optimize a conical intersection between the ground and first excited-state potential energy surfaces of previtamin D (precalciferol), with excitation localized in a small part of the molecule: the hexatriene chromophore. These calculations were up to 100 times faster with little loss of accuracy compared to a full non-ONIOM Target calculation. The most accurate ONIOM method combination was CASSCF/4-31G//ROHF/STO-3G(Triplet): in comparison to the Target (CASSCF/4-31G), bond lengths and angles in the hexatriene model region were calculated to within 0.02 A and 0.7 degrees , respectively, and the energy difference between the conical intersection and nearest associated S 1 minimum to within 0.5 kcal x mol (-1). All of the low-level methods selected produced accurate geometries, including the UFF molecular mechanics and AM1 semiempirical methods, suggesting a cheap and efficient way of initially optimizing conical intersections geometries. Furthermore, ONIOM allows for an assessment of the localization of excited states, providing some fundamental insight into the physical processes involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...